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Nonlinear response for nonautonomous systems

Janka Petravic and Denis J. Evans
Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 18 February 1997!

We present a detailed derivation of the transient time correlation function~TTCF! form of nonlinear re-
sponse theory which is generalized to handle time-dependent external fields. Our derivation stresses the anal-
ogy with the TTCF formalism for constant fields. We also discuss some limiting cases. We use computer
simulation to test the generalized TTCF theory. Our simulation results show that the generalized TTCF method
has an efficiency superior to direct calculation not only for weak fields but also for strong time-dependent
external fields.@S1063-651X~97!10607-9#

PACS number~s!: 02.70.Ns, 05.20.2y, 61.20.Ja, 61.20.Lc
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I. INTRODUCTION

For classicalN-body systems close to equilibrium, th
Green-Kubo linear response theory@1,2# provides a rela-
tively complete treatment of response to both constant
time-dependent external fields. Far from equilibrium a sta
tical mechanical description of nonequilibrium steady sta
in constant external fields is given by the transient time c
relation function~TTCF! @3# and Kawasaki@4# formalisms.
The transient time correlation function is a nonlinear ana
of the Green-Kubo equilibrium time correlation functio
The TTCF method is perhaps the simplest nonlinear ge
alization of the Green-Kubo relations. It is valid for bo
thermostated and unthermostated nonlinear dissipative
tems.

In a previous letter@5#, we outlined how this method ca
be generalized to describe the nonlinear response to t
dependent external fields, using the concept of an exten
phase space where an additional coordinate characterize
time dependence of the external field. Previous theories@6#
relied upon the definition of propagators using time-orde
exponentials, and the resulting expressions, due to com
tivity constraints, were too complex to be used in compa
sons with experiment. Our theory gives an expression for
response which is analogous to the simple TTCF expres
for a constant field, and the algorithm using this express
exhibits an efficiency which is superior to direct simulati
both for weak and strong applied fields.

In Sec. II of this paper we derive the generalized tim
dependent response of a phase function~i.e., a function of
the phase-space coordinates!, emphasizing the analogy wit
the TTCF response theory for a constant field, and disc
the limiting cases of constant field TTCF and linear tim
dependent response. We test the formalism using comp
simulation of a two-disk color conductivity model describ
in Sec. III. In Secs. IV and V, we compare the results a
efficiency of direct calculation, Green-Kubo theory, a
time-dependent TTCF theory for the response of a ph
function with a strong linear component and with no line
component, respectively.
561063-651X/97/56~1!/1207~11!/$10.00
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II. FORMALISM

First we outline the TTCF response theory f
N-particle systems in a constant external fieldFe switched
on at t50. The equations of motion of such a system are

q̇i5
pi
m

1Ci~G!Fe ,

ṗi5Fi1Di~G!Fe2api , ~1!

whereFi is the interaction force between the particles, a
the Gaussian thermostat multipliera, given by

a5

(
i

Fi
m
•pi

(
i

pi
2

m

1

(
i

Di

m
•pi

(
i

pi
2

m

Fe , ~2!

makes the kinetic energyK5( ipi
2/2m a constant of motion.

The state of the system can be represented by a point in
phase spaceG spanned by„qi ,pi ( i51, . . . ,N)….

Let B(G) be a phase function, i.e., a function of th
phase-space coordinatesqi andpi only. For t<0, the exter-
nal field is zero, the system is assumed to be at equilibr
and the phase space average^B(t,0)& is equal to its equi-
librium value^B(0)&. For t.0, the constant field acts upo
the system, and the phase-space average ofB changes

FIG. 1. Response of a phase functionB to a constant fieldFe

applied at t50. The phase space average^B& changes from its
equilibrium valuê B(0)&, through transient behavior toward a co
stant steady-state value^B(t→`)&.
1207 © 1997 The American Physical Society
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1208 56JANKA PETRAVIC AND DENIS J. EVANS
through transients to its steady-state value^B(t→`)&, as
shown in Fig. 1. The TTCF theory relates the instantane
value of the phase-space average^B(t)& to the time integral
of the field-dependent correlation function ofB(G) and the
dissipative fluxJ(G),

^B~ t !&5^B~0!&2bFeE
0

t

dŝ B@G~s!#J@G~0!#&. ~3!

In Eq. ~3!, b51/kBT, wherekB is the Boltzmann constant
T is the absolute temperature, and the dissipative fluxJ(G) is
defined as

J~G!5(
i

SCi•Fi2Di•
pi
mD . ~4!

Expression~3! has been derived using the assumption
adiabatic incompressibility of phase space (AIG), namely,

(
i

S ]

]qi
•Ci1

]

]pi
•Di D50, ~5!

which is satisfied by all systems whose adiabatic equat
of motion can be derived from a Hamiltonian—see Ref.@7#
for details. The time dependence on both sides is gener
from the field-dependent equations of motion for system~1!,
with or without the thermostat. The validity of the Eq.~3!
also relies upon the fact that Eqs.~1! do not depend explic-
itly on time, and therefore Eq.~3! does not hold in the non
autonomous case.

If the external field is periodic in time with the perio
Te , Fe5Fe(t)5Fe(t1Te), there is no real steady state.
the long-time limit the response of a phase function will
time periodic. However, regardless of where, within its p
riod, the field is switched on att50, in the long-time limit
the responsêB(t→`)& will depend on the external field
~not time! in the same way, as shown in Fig. 2. This mea
that after a long time the response will have the same va
at the same point in the period ofFe(t) irrespective of the
starting ‘‘phase angle’’ ofFe(t) at t50. Clearly this lack of
sensitivity to the initial phase angle will eventually bre
down if the external field is sufficiently strong. We do n
consider such systems here.

FIG. 2. Response of a phase functionB to a time-periodic ex-
ternal field Fe applied at t50. At first the response depend
strongly on the initial ‘‘phase angle’’ of the external field. After
long time, the time dependence of the responses to fields with
ferent initial ‘‘phase angles’’ will be different, but their dependen
on the ‘‘phase angle’’ will be the same.
s
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Therefore it is convenient to define an additional pha
coordinatew proportional to time and analogous to the pha
angle of trigonometric functions,

w~ t !5w1vt,

so that Fe becomes a periodic function ofw, Fe(w)
5Fe(w1Fe), whereFe5vTe . The phase space of the sy
tem can beextendedby adding this new coordinate, so th
all the explicit time dependence in the equations of motion
contained in the variablew,

q̇i5
pi
m

1Ci~G!Fe~w!,

ṗi5Fi1Di~G!Fe~w!2api ~6!

ẇ5v.

The state of the system can now be represented by a poi
extendedphase spaceG85(G,w)5(qi ,pi ,w; i51,...,N). It
is sufficient to consider values ofw in the range w
P@0,Fe#, so thatw(t)5mod(w1vt,Fe). In order to know
the responsêB(t)& at a certain specified timet, we need to
know the initial ‘‘phase angle’’w of the external field. At
very long timeŝ B(t)& is dependent on both the timet and
the initial value ofw. For example, for any timet, no matter
how large, the value of̂B(t)& is different for different initial
phase angles. Therefore we should write^B(w0 ;t)&. How-
ever, at large times~provided the field strength is not to
large! the value of̂ B(t)& is a unique function of the curren
value ofw, namelyw(t), as illustrated in Fig. 2. There is n
ambiguity in writing ^B„w(t)…& in the long-time limit. The
final state, which is time periodic in the phase spaceG, is a
time-independentsteady state in the extended phase sp
G8.

Since system~1! in a time-dependent external fiel
Fe(t) is now described by autonomous equations of mot
~6! in the extended phase space, we can repeat the ste
the derivation of TTCF response for autonomous systems~3!
and evaluate theextended phase-space average^B(t)&8 of
B(G) at time t. We shall go through these steps explicit
below.

AlthoughB(G) is solely a function ofG, the phaseG that
the system evolves to at timet, namely,G(t), is a function
of the initial extendedphase,G85(G,w). Thus it is more
revealing to writeB„G(t)…5B„G(t;G,w)…. In order to know
the value of a phase function at timet, in addition to the
elapsed time, we need to specify the initial phase vectoG
and the initial phase anglew of the external field.

For systems governed by Eq.~6!, the equilibrium ex-
tended phase-space distributionf 08(G8) is uniform inw,

f 08~G8!dG85
f 0~G!

vTe
dG dw, ~7!

where

f 0~G!5
exp@2bU~G!#d„K~G!2K0…

E dG exp@2bU~G!#d„K~G!2K0…

.

if-
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56 1209NONLINEAR RESPONSE FOR NONAUTONOMOUS SYSTEMS
HereU is the potential energy of the system,K05dN/2b is
the conserved kinetic energy, andd is the Cartesian dimen
sionality of the system.

The average over the extended phase space ofB, taken at
time t, is

^B~ t !&85E dG8 f 8~G8,t !B~G!

5E dG8 f 8~G8,0!B„G~ t;G8!…

5E dG8 f 08~G8!B„G~ t;G,w!…

5E dGdw
f 0~G!

vTe
B„G~ t;G,w!… ~8!

in the Schro¨dinger and Heisenberg pictures, respectively.
the equilibrium distributionf 0(G8) is known and given by
Eq. ~7!, it is simpler to use the Heisenberg picture.

The equation of motion forB(G) can be written using the
chain rule

dB„G~ t !…

dt
5Ġ•

]

]G
@B~G!#U

G~ t !5G~ t;G,w!

. ~9!

Differentiation of the Heisenberg expression~8! for ^B(t)&
using Eq.~9!, and the fact that]B/]w50, yields

d^B~ t !&8
dt

5E dG8 f 08~G8!F Ġ8•
]

]G8
„B~G!…G

G8~ t !

. ~10!

Equality~10! relies upon the time independence of syst
~6!, and does not hold in the non-autonomous case. Integ
ing Eq. ~10! by parts, we obtain

d^B~ t !&8
dt

52E dG8B„G~ t !…F ]

]G8
•„Ġ8 f 08~G8!…G , ~11!

since the boundary term vanishes. Using the equation
motion ~6!, expression~7! for the equilibrium distribution
function f 08(G8) and the definition of the dissipative flux~4!,
and assuming the adiabatic incompressibility of the ph
spaceAIG, Eq. ~5!, we get

]

]G8
•@Ġ8 f 08~G8!#5

]

]G
•@Ġf 08~G8!#U

t50

1v
] f 08~G8!

]w
U
t50

5 f 08~G8!$bFe~w!J~G!% t50 . ~12!

Substituting Eq.~12! into the equation of motion for Eq
~11!, gives

d^B~ t !&8
dt

52bE dG8B„G~ t;G,w!…Fe~w!J~G! f 08~G8!,

and, integrating with respect to time yields
s

t-

of

e

^B~ t !&85^B~0!&82bE
0

t

dŝ B@G„s;G~0!,w~0!…#

3Fe„w~0!…J„G~0!…&8. ~13!

Expression~13! describes the evolution of the extende
phase-space average of the phase variable after the ext
field is applied. The average over theextendedphase space
means an average over all possible initial combinations
positions, momenta and the additional phase-space coo
nate w. If B were taken to be the dissipative flux, the
^J(t)&850, by symmetry. The fact that the extended avera
of the dissipative flux vanishes illustrates that the aver
taken in Eq.~13! is not really what we are most interested i
We shall now consider averages taken over the stand
phase spaceG for a particular value ofw5wP at time t.

As shown in Fig. 2, the long-time behavior of a pha
function ^B(t)& can be regarded as^B(t)& having a different
‘‘steady state’’ for eachw(t)P@0,Fe#. Let us investigate
this idea in more detail. If the field is switched on att50 in
such a way thatw(t50)5w0 , the responsêB(t)& may look
like the curve in Fig. 3~a!. Sincew(t)5mod(w1vt,vTe),
the value ofw5w0 occurs after each periodTe . We can
monitor the corresponding value of the response^B„t;w(t)
5w0…& whenever the ‘‘phase angle’’ takes on the value
w0 . It changes from the equilibrium valuêB(0)& for w(t
50)5w0 through several different valueŝB„Te ;w(Te)
5w0…&, ^B„2Te ;w(2Te)5w0…&,..., over a few periods, and
after a long time it reaches its ‘‘steady state’’ and stays c
stant. However, the evolution of the responses for eachw0
toward its ‘‘steady state’’ is not continuous in time as for t
constant field, but we can only obtain discrete values o
periodTe apart in time.

For w0 to occur at a time different from t
50,Te,2Te,3Te ,..., theexternal field has to start differentl
at t50, for example, like in Fig. 3~b!, with w(t50)5w1 . In
this case, w(t)5w0 occurs at t5t1 ,t11Te ,t112Te ,t1
13Te ... . If we included all possible starting points of th
field w(t50)P@0,Fe#, we would obtain a continuous re
sponsêB„t;w(t)5w0…& as a function of time for any ‘‘phase
angle’’ w0 , as shown by the dotted line in Fig. 3~c!. How-
ever, each value of this continuous function within one p
riod is a contribution of a different ensemble of system
corresponding to the external field starting with a differe
‘‘phase angle’’ att50. In other words, we have to use th

FIG. 3. A method to obtain a continuous response to a tim
periodic field at a fixed value of ‘‘phase angle’’w. It is necessary to
use the data from the responses starting at all possible initialw~0!.
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1210 56JANKA PETRAVIC AND DENIS J. EVANS
phase-space trajectories from the wholeextendedphase
spaceG8 in order to obtain a continuous time evolution
the response for a chosen value ofw0 .

Since the correlation function

^B@G„t;G~0!,w~0!…#Fe„w~0!…J„G~0!…&

in Eq. ~13! is an average of a phase function, we shall ne
this concept of a continuous evolution of a phase function
a particular value ofw5wP in the derivation of average
taken over the standard phase spaceG for a particular value
of w5wP at time t.
e

n
ie

at

e
a

f

d
r

The expression corresponding to the Heisenberg pic
in Eq. ~8! is

^B„G~ t !;w~ t !…5wP&

5^B@G~ t !d„w~ t !2wP…#&8

5E dG8 f 08~G8!B„G~ t;G,w5wP2vt !…d„w~ t !2wP….

Differentiating with respect to time, we find using the sam
procedure as above,
d

dt
^B@G~ t !#d„w~ t !2wP…&85E dG8 f 08~G8!Ġ8•

]

]G8
@B~G„t;G,w5wP2vt !…d„w~ t !2wP…#

52E dG8B„G~ t;G,w5wP2vt !…d„w~ t !2wP…
]

]G8
•@Ġ8 f 08~G8!#

52bE dG8B„G~ t;G,w5wP2vt !…d„w~ t !2wP…Fe~w!J~G! f 08~G8!

52b^B„G~ t !;w~ t !5wP…Fe~wP2vt !J„G~0!,wP2vt…& ~14!
ar
e-
-
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Integrating this equation gives

^B@G„t;w~ t !5wP…#&

5^B@G„0;w~0!5wP…#&2bE
0

t

dsFe~wP2vs!

3^B@G~s;w~s!5wP…#J@G„0;w~0!5wP2vs…#&.

~15!

That this equation is the time integral of Eq.~14! is most
easily seen by noting that att50 it is an identity, and that
differentiation of Eq.~15! yields Eq.~14!.

The average valuêB„G(t);w(t)5wP…& in Eq. ~15! means
the average over all values of phaseG, at time t, for a par-
ticular chosen constant valuewP of the phase angle at tim
t, w(t); w(t)5wP . If all possible values ofwP from the
interval @0,vTe# are substituted into Eq.~15!, the depen-
dence of^B„G(t);w(t)5wP…& on wP at the timet can be
found. It should be pointed out that this dependence can
be obtained by direct calculations from a set of trajector
starting from thesingleinitial value ofw~0!, as shown in Fig.
3. Such a set could only give the value of^B„G(t);w(t)
5w01vt…& at the time t, ^B„G(t1dt);w(t)5w01v(t
1dt)…& at the timet1dt, etc. It should also be observed th
in the integrals on both sides of Eq.~15!, w is a constant
equal towP . However, as the times changes, phase-spac
trajectories which contribute to the correlation function
some particular value ofs change. For different timess they
start at different initial values ofw05wP2vs. Therefore, in
order to find the evolution of̂B„G(t);w(t)5wP…& for the
chosen value ofw(t)5wP , we need to know the behavior o
trajectories withall possible initialw~0! at all previous times.
ot
s

t

Expression~15! is the general expression for the nonline
response to a time-periodic external field. For tim
independent fields, there is now dependence in the distribu
tion function, and all extended phases that differ only in t
extended phase-space coordinatew become identical, so tha
Eq. ~15! reduces to the TTCF formula for autonomous sy
tems@3#,

^B„G~ t !…&5^B„G~0!…&2bFeE
0

t

dŝ B„G~s!…J„G~0!…&.

~16!

The linear time-dependent response formula@1#, appli-
cable in the low-amplitude or high-frequency limit, is ob
tained from Eq.~15! if the equilibrium correlation function is
substituted for the transient correlation in the integrand
Eq. ~15!, keeping in mind that in equilibrium there is now
dependence inB(t) or J(t). After substitutings85t2s, we
obtain

^B„G~ t !…&5^B„G~0!…&2bE
0

t

ds8Fe~s8!

3^B„G~ t2s8!…J„G~0!…&. ~17!

The general formula~17! has been derived for system
thermostated using the Gaussian thermostat~2!. However,
analogous formulas can be derived for adiabatic and can
cal systems, systems thermostated with different thermos
or with other types of constraints, for example microcano
cal, isobaric, or isoenthalpic.
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56 1211NONLINEAR RESPONSE FOR NONAUTONOMOUS SYSTEMS
III. TEST SYSTEM: COLOR CONDUCTIVITY

The formalism described in the Sec. II is illustrated by t
example of nonequilibrium molecular dynamics simulati
of a system of two disks with periodic boundary condition
subject to the time-dependent color field@8#. The equations
of motion are

q̇i5
pi
m
,

~18!

ṗi5Fi1 iciFc~ t !2api , i51 and 2.

The interactionFi between disks is characterized by t
WCA ~Weeks-Chandler-Anderson! pair potential@9#,

U~r !5H 4«F S s

r D
12

2S s

r D
6G1« for r,21/6s

0 for r.21/6s,

wheres is the effective diameter of the disks,e the depth of
the potential well of the corresponding Lennard-Jones po
tial, andr5uq12q2u is the distance between disks 1 and

The disks differ by color labels,ci5(21)i , i51 and 2,
which determine the interaction of each disk with the ext
nal color fieldFc(t) acting in thex direction. We assume a
sinusoidal time dependence,

Fc~ t !5Q~ t !F0sin~w01vt !,

where the Heaviside functionQ(t) denotes the fact that th
field starts to act upon the system att50.

The system is thermostated using the Gaussian ther
stat. It should be mentioned here that in anN-body system
the temperature is defined from the peculiar particle velo
ties relative to the streaming velocity of each species. Ho
ever, in the special case of just two particles, there are
enough degrees of freedom to define both the streaming
locity and the peculiar velocities. Therefore we define atem-
peraturelikevariableT using the laboratory kinetic energy

kBT/25 (
i51,2

pi
2/2m[K, ~19!

where kB is the Boltzmann constant. The temperaturel
variableT, as well as the total kinetic energy, are constrain
to constant values using the Gaussian multipliera,

a5

(
i51,2

~Fi1 iciFc!•pi

(
i51,2

pi
2

. ~20!

For this system, the phase space is defined asG
5(qi ,pi), i51 and 2. The additional coordinatew can be
defined as

w~ t !5w1vt, ~21!

so that the equations of motion fort.0 in extendedphase
spaceG85(qi ,pi ,w), i51 and 2, are
,

n-

-

o-

i-
-
ot
e-

d

q̇i5
pi
m
,

ṗi5Fi1 iciF0sinw2api , ~22!

ẇ5v,

with the thermostating terma given by Eq. ~20!, and qi
[(xi ,yi), etc.

In this system, the equilibrium distribution func
tion f 08(G8) Eq. ~7!, is independent of w, and
~]/]G8!•@Ġ8f 08(G8)] in Eq. ~12! is given by

]

]G8
•@G8 f 08~G8!#52bFc~w0! f 08~G8!VJx~G8!, ~23!

where

Jx5
1

V (
i51,2

ci ẋi ~24!

is the color current density. It should be observed that for
two-particle system thermostated using Eqs.~18!, ~19!, and
~20!, the magnitude of the color current cannot increase
yond a saturation value which can be determined from
constant kinetic energy~19!. An external field of even in-
creasing magnitude would cause an increase in the ma
tudes of thex components of particle velocities. In the lim
of Fe→`, K5(p1x

2 1p2x
2 )/2m can increase only to the max

mum value determined from condition~19!,

max$~p1x
2 1p2x

2 !/2m%5max$p1x
2 /m%5kBT/2,

i.e.,

max$up1xu%5~mkBT/2!1/2 and max$uẋ1u%5~kBT/2m!1/2.

SinceJx5( ẋ12 ẋ2)/V522ẋ1 /V52nẋ1 , wheren is the
number densityn52/V, the saturation color current is

max$uJxu%5n~kBT/2m!1/2. ~25!

We also define a microscopic pressurelike variable of t
two-particle two-dimensional system,

P5
1

2
~Pxx1Pyy!5

1

2V K (
i51

N S pxi2 1pyi
2

m
1xiFxi1yiFyiD L .

~26!

In this expression, the term corresponding to the kine
part of the pressure consists of the contribution of the to
rather than peculiar momenta, since the peculiar velocity
no meaning in the two-particle system. Because of the th
mostating~18!, ~19!, and ~20!, the total kinetic energy is
fixed, and the ‘‘kinetic part’’ ofP is a constant equal to
kBT. The other two terms in the sum are exactly equal to
configurational part of the pressure.

We monitored the response ofJx85(V/N)Jx , which is
proportional to the color current density~24!, and the
pressure-like variableP, Eq.~26!, to sinusoidal color field as
a function of the anglew and timet. Since the color curren
is a linear function of momenta, the current response ha
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FIG. 4. Color currentJx85(1/N)Sci ẋi as a function of the anglew at different times after the color field has been applied. The result
the direct simulation, time-dependent TTCF, and linear approximation are compared for two amplitudes of the color field. For th
amplitudeF050.2 all three methods give similar results, and for the higher amplitudeF054 the amplitude of the linear approximatio
response is higher than the other two, which cannot be distinguished in the graphs. The dashed line represents the rescaled exte
show the development of the phase lag. The maximum allowed value forJx8 is (kBT/2m)

1/2, and for this particular computer experiment
is (0.5)1/250.707 107.
s

um
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re
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e
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strong linear component for weaker fields and the result
the time-dependent TTCF simulation could be compared
the results of the linear-response theory. The equilibri
correlation function̂ P(t)Jx(0)& under the time integral in
Eq. ~17! vanishes at all times, and there is no linear respo
for the pressure. The observed response in the pressu
therefore a strictly nonlinear effect, and provides a powe
test of our theory.

IV. RESULTS: COLOR CURRENT

The response of the color current density to sinuso
color field has been monitored as a function of the anglw
and timet, and, since in equilibrium̂Jx„G(0);w…&50~;w!,
Eq. ~15! reduces to
of
to

e
is
l

l

^Jx„G~ t !;w~ t !5wP…&

52bVE
0

t

ds Fc~wP2vs!^Jx„G~s!;w~s!5wP…

3Jx„G~0!;w~0!5wP2vs…&. ~27!

The simulations were done at the reduced den
r*5rs250.396 850 and at the reduced temperatu
T*5kBT/e51.0, using the fourth-order Runge-Kutt
method of integration of the equations of motion~20! with a
time step ofdt50.002. The interval@0,2p# of possible val-
ues of the anglew has been divided into 100 subinterval
and the time step of time integration in Eq.~27! is therefore
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ds50.01. From each starting phaseG5(qi ,pi) of the isoki-
netic equilibrium ensemble, an additional starting point w
generated using the time-reversal mappingMT(G)5(qi ,
2pi), in order to improve the statistics and to reduce
systematic error. This additional starting phase point ens
that the average initial current is identically zero.

The color current response has been monitored for a ra
of color field amplitudes at the frequency ofv/2p equal to
unity. Figure 4 shows the evolution of the color current
sponse for two amplitudes of the color field,F050.2 and 4,
as a function of the anglew(t) at different times, from direct
simulation and using the transient time correlation funct
approach. Since the objective of this simulation has bee
test whether the direct calculations and our theory~27!
coincide, we used a large number of initial trajectori
2360 000 for each of the 100 values ofw~0! for the weaker
field, and 2318 000 for the stronger field where the resu
of direct simulations were less noisy.

In Fig. 4, shortly after the color field started to act up
the system, att50.1, the response is of very low amplitud
and almost in phase with the field. In time, the phase lag
the amplitude change until they reach the value of the fi
state. The corresponding linear response was evaluated u
the time-dependent response formula~17! and compared to
the direct simulation and TTCF results. The equilibrium c
relation function in Eq. ~17! has been calculated from
33107 trajectories using the shift register technique@10#. In
our calculations the shift register was not filled at every ti
step, but there was a waiting period of 500 time steps
tween the starting points of old and new trajectories.

In the case of the lower amplitude in Fig. 4 the direct a
TTCF methods agree within the experimental error, althou
there is still some noise in the direct results att.2, and the
amplitude of the linear response is only slightly larger. Ho
ever, for the higher amplitude of the color field in Fig. 4, t
amplitude of the linear approximation is about 8% higher
the final state than the one obtained by direct simulati
whereas the direct simulation and TTCF results agree
within 1% and cannot be distinguished in the graph.

The time evolution of the color current response for fi
periods of color fieldFc of the amplitudeF054 for four
different anglesw, obtained from the same simulation a
above, is shown in Fig. 5. The correspondence of the di
simulation and the TTCF results is remarkable at all time

FIG. 5. The time evolution of the color currentJx8 at four angles
w for the color field amplitudeF054.
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In Fig. 6, the trajectories starting at the same initial an
w050 are followed over five periods of the color field
Again, the linear approximation results agree reasona
well with the direct simulation and TTCF results in the ca
of the lower amplitude of the color fieldF050.2, but for the
higher-field amplitudeF054 the oscillations predicted by
the linear approximation are larger than the direct simulat
and TTCF results. It is obvious that the linear approximat
should fail at larger fields, since it predicts that the amplitu
of Jx8 increases linearly with the amplitude of the field, a
thus can exceed the maximum allowed amplitu
max$uJx8u%5(kBT/2m)

1/250.707, which is an impossible re
sult. However, even at a field of the amplitudeF054 the
induced current is only 35% of its saturated value, and
should not be too surprised that the linear theory is a reas
able approximation. The response obtained by the TT
method coincides with the direct simulation forF054.

The main advantage of the time-dependent TTCF met
lies in its efficiency in noise reduction, especially for field
of low amplitude. In Fig. 7 the results of the direct simul
tion and TTCF att55 obtained from the simulations from
235000 and 2360 000 for eachw are compared forF0
50.2 and from 235000 and 2318 000 forF054. For the
lower-field amplitude there is considerable noise reduction
the direct simulation results with the increased number
trajectories, but the result is still quite noisy. The TTCF r
sults, on the other hand, are smooth and hardly change a
which means that the correct statistics can be obtained
less trajectories by using the TTCF method. Figure 7 a
shows that the direct simulation is much more efficient
high-field amplitudes (F054) than for low amplitudes, al-
though the TTCF results are still smoother than the dir
results.

In order to compare the efficiency of the two metho
for calculating the color current response at a range
field amplitudes, we performed two sets of simulations us
2310 000 trajectories for each value ofw, and used the dis-
crepancy in the results to estimate the error of simulat
DJx8/F0 . The mean error was calculated as the mean valu
half the discrepancy of the responses for the external fie
starting atw050 over the time intervalDt55, and the maxi-
mum error is the maximum of half the discrepancy over
same period. Figure 8 shows that for the fields of the am
tude of less than aboutF052.5 the mean error of the direc
method is larger than the mean error of the TTCF meth
and TTCF is clearly more efficient. ForF0>2.5 the mean
errors and hence the efficiencies of both methods bec
comparable. The maximum errors Fig. 8 are, however, c
sistently lower for the TTCF method, because the lat
yields averages which are smoother.

The Green-Kubo linear-response theory can be used
estimate the expected error in direct calculations of co
current. In the low-field limit the standard deviation in th
current densityJ8 is independent of the external field@11#,
and thereforeDJx8/F0x should be inversely proportional t
the field amplitude. They}F0

21x fits to the mean and maxi
mum errors of direct calculations, shown in Fig. 8 as das
lines, show that this proportionality is roughly satisfied. T
errors in the TTCF calculations seem to be field independ
but are always smaller than those for the direct calculatio
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FIG. 6. The time evolution of the color currentJx8 from the trajectories which all start from the same initial anglew050. For a lower-field
amplitudeF050.2, the color currents, evaluated by direct calculation, using the time-dependent TTCF method and the linear approx
are comparable. For the higher-field amplitudeF054 the linear response theory gives oscillations that are too large, and the results
direct and TTCF methods coincide on the diagram. The thin line is the rescaled external field.
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V. RESULTS: HYDROSTATIC PRESSURE

The TTCF expression for the ‘‘hydrostatic pressure’’ d
rived from Eq.~15! is

^P„G~ t !;w~ t !5wP…&5^P~0!&2bVE
0

t

ds Fc~wP2vs!

3^P„G~s!;w~s!5wP…

3Jx„G~0!;w~0!5wP2vs…&.

~28!

In Figures 9, 10, and 11 we show the results obtained
the direct simulation and the time-dependent TTCF met
for 1.13105 trajectories for each of the 100 values ofw for
the field amplitude ofF053. The pressure oscillates wit
twice the frequency of the external field~since it is an even
-

y
d

function of momenta and therefore depends only on the m
nitude and not on the sign of the external field!. Since the
effect is very small, the direct simulation data are very noi
and therefore there is still some disagreement at early tim
At late times, the agreement between the two sets of ca
lations is excellent. This agreement is all the more rema
able because of the complex shape of the response cu
and the fact that these responses are entirely nonlinear.
chance of accidental agreement, particularly in Fig. 10, m
be negligible.

In Fig. 10 we see the response forw(t)50,p, and for
w(t)5p/2,3p/2. By symmetry the response in each of the
pairs should be identical. The disparity in this gives a re
sonable estimate of the statistical uncertainty in the TT
and the direct response curves.

Figure 11 shows the pressure responses obtained
direct simulations and TTCF results for fields of the amp
t

t

s-
-
e

l

FIG. 7. Illustration of the effi-
ciency of the time dependen
TTCF method in noise elimina-
tion. For the lower field amplitude
F050.2, the noise is somewha
reduced in the results from
2360 000 trajectories for eachw
compared to the results from
235000 trajectories. TTCF re-
sults, however, do not differ
much, suggesting that good stati
tics can be obtained from less tra
jectories. For the higher amplitud
F054, the direct method is much
more efficient than for the lower
field, but the TTCF results are stil
smoother.
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tudeF053 starting atw050 andw05p/2. The dotted lines
represent the rescaled external field. The response fow0

5p should be equal to the response forw050 because the
field differs only in sign, and the response forw05p/2
should equal the response forw053p/2. The disparity be-
tween the responses atw050 andw05p was used to esti-
mate the simulation errorD(DP)/F0 depending on the field
amplitude. We used 2310 000 trajectories for eachw at each
field amplitude to obtain the responses, and plotted the a
age discrepancies over the time interval ofDt55 against the
field amplitude in Fig. 12. Although the direct and tim
dependent TTCF curves are computed from the same n
ber of simulation time steps, the TTCF curves always hav
smaller variance. This is somewhat surprising given that
field amplitude is so large, since the TTCF methods w
always be more efficient than direct methods at sufficien
small fields. We believe that this improvement in efficien
is related to the fact that, in Eq.~15!, the response at a give
time and specified phase angle is computed from an
semble average of trajectory responses which span the in
phase angle distribution. This cross-phase-averaging re
in superior efficiency.

VI. CONCLUSION

The generalization of the TTCF formalism to nonauton
mous systems was developed by extending the phase s

FIG. 8. ~a! Simulation errors of the color current response
a range of field amplitudes from two sets of simulations
2310 000 trajectories for each field. The mean error is the ave
error from two responses to the field starting withw(0)50 over a
time interval ofDt55, the maximum error is the largest error
this interval. The assumption of 1/F0 dependence of the direc
simulation errors on the field amplitude gives a reasonably good
~b! Mean errors become comparable forF0>2.5, but the maximum
error is always larger for the direct simulations, which is better s
in the logarithmic plot.
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FIG. 9. The direct simulation and TTCF results for the press
as a function ofw at different times after the color field ofF053
has been applied. The pressure oscillates with twice the freque
of the field.

FIG. 10. The time dependence of the pressure at four anglew
for the color field amplitudeF053. The responses atw(0)50 and
w(0)5p should be equal by symmetry, as well as the response
w(0)5p/2 andw(0)53p/2, which can give an estimate of th
error of simulation.
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to include an additional coordinatew, which is linearly de-
pendent on time and which is incorporated into the equati
of motion. The linear time dependence of this addition
phase-space coordinate is essential for the developme
the extended TTCF algorithm, because it enables one
reach exactly the prescribed values ofw after a given number
of time steps. The equations of motion in theextendedphase
space become autonomous, and the response is govern
the time evolution of the probability distributionf 8(G8) of
the extended phase space as a whole. Therefore, in ord
calculate the response, it is necessary to use initial equ
rium phasesG8(0) distributed over all possible values ofw,
as well as over all possible values~q,p!. In the direct
method, one observes a set of initial phases on a hyperp
w(0)5wP2vt, as it evolves in time while the phase-spa
distribution relaxes from equilibriumf 0(G8) to the steady-
state f `(G8) form. The extended TTCF method, howeve

FIG. 11. The responses to the external fields starting atw~0!50
andw(0)5p/2 for F053. The response atw(0)5p should equal
the response atw(0)50, and forw(0)53p/2 should equalw~0!
5p/2 because the corresponding fields differ only in sign.
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looks only at one hyperplanew5wP all the time, and uses
only the phases on this hyperplane, as they arrive from
ferent initial coordinatesw~0!, to evaluate the average a
f (G8,t) changes in time. It is therefore not surprising th
trajectories starting at all possible extended phase-space
ordinates w play a role in calculations of̂ B@G„t;w(t)
5wP…#&, i.e., the average ofB over a particular hyperplane
w5wP of G8 at the timet when the average is evaluate
using the time-dependent TTCF algorithm.

The simulation results for the test case of the respons
the color current to a sinusoidal color field for a period
two-disk system, shows excellent agreement between the
tended TTCF approach and the direct simulation. The co
parison of results for the intrinsically nonlinear field induc
pressure shift is even more impressive. Even at comp
tively large fields, the extended TTCF approach yields
sults with superior computational efficiency to direct simu
tion. This enhanced efficiency is thought to result from t
nondeterministic sampling of the phase angle. This samp
results in an efficient exploration of the extended pha
space.

One disadvantage of this theory is that it can only
applied to periodic fields. Another disadvantage is that
results are relevant only to periodic fields of the same f
quency and wave form. For example, we cannot use the
sults of the present simulations for sinusoidal fields to pred
the response of the same system to strong square-wave fi
or indeed, to sinusoidal fields of different frequencies.

FIG. 12. Dependence of the simulation error on the field am
tude. The error of simulation calculated from 2310 000 trajectories
per w for each field amplitude is found from the average discre
ancy between the responses forw(0)50 andw(0)5p over the
time interval ofDt55. Again, the 1/F0 dependence of the direc
simulation errors on the field amplitude gives a good fit.
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