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Nonlinear response for nonautonomous systems
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We present a detailed derivation of the transient time correlation fun¢li®@F) form of nonlinear re-
sponse theory which is generalized to handle time-dependent external fields. Our derivation stresses the anal-
ogy with the TTCF formalism for constant fields. We also discuss some limiting cases. We use computer
simulation to test the generalized TTCF theory. Our simulation results show that the generalized TTCF method
has an efficiency superior to direct calculation not only for weak fields but also for strong time-dependent
external fields[S1063-651X%97)10607-9

PACS numbsgs): 02.70.Ns, 05.26-y, 61.20.Ja, 61.20.Lc

I. INTRODUCTION Il. FORMALISM

First we outline the TTCF response theory for
For classicalN-body systems close to equilibrium, the N-particle systems in a constant external fi€ld switched

Green-Kubo linear response thedry,2] provides a rela- on att=0. The equations of motion of such a system are
tively complete treatment of response to both constant and
time-dependent external fields. Far from equilibrium a statis- qi:& +Ci(I)Fe,
tical mechanical description of nonequilibrium steady states m
in constant external fields is given by the transient time cor- = _
relation function(TTCF) [3] and Kawasak[4] formalisms. Pi=Fit Di(IFe—ap;, @
The transient time correlation function is a nonlinear analogvhereF; is the interaction force between the particles, and
of the Green-Kubo equilibrium time correlation function. the Gaussian thermostat multiplier given by
The TTCF method is perhaps the simplest nonlinear gener-
alization of the Green-Kubo relations. It is valid for both

. T Fi D;
thermostated and unthermostated nonlinear dissipative sys- 2 o P E ™ P
I I
tems. _ _ _ a= —+ — Fe, (2
In a previous lettef5], we outlined how this method can 2 Pi E Pi
be generalized to describe the nonlinear response to time- ~ 'm ~ 'm

dependent external fields, using the concept of an extended

phase space where an additional coordinate characterizes the

time dependence of the external field. Previous thedBgs Makes the kinetic energy=;p{/2m a constant of motion.
relied upon the definition of propagators using time-orderedrhe state of the system can be represented by a point in the
exponentials, and the resulting expressions, due to commighase spack’ spanned by(q; ,p; (i=1, ... N)).

tivity constraints, were too complex to be used in compari- Let B(I') be a phase function, i.e., a function of the
sons with experiment. Our theory gives an expression for the@hase-space coordinatgsandp; only. Fort<0, the exter-
response which is analogous to the simple TTCF expressioi@! field is zero, the system is assumed to be at equilibrium
for a constant field, and the algorithm using this expressiond the phase space averd@t<0)) is equal to its equi-
exhibits an efficiency which is superior to direct simulation IPrium value(B(0)). Fort>0, the constant field acts upon

both for weak and strong applied fields. the system, and the phase-space averageB ofhanges
In Sec. Il of this paper we derive the generalized time-

dependent response of a phase funcfiog, a function of Fe

the phase-space coordingtesmphasizing the analogy with <B(tow)>

the TTCF response theory for a constant field, and discuss -

the limiting cases of constant field TTCF and linear time- <B(0)> /\

dependent response. We test the formalism using computer

simulation of a two-disk color conductivity model described 1=y i

in Sec. lll. In Secs. IV and V, we compare the results and

efficiency of direct calculation, Green-Kubo theory, and FG. 1. Response of a phase functiBrio a constant fieldF

time-dependent TTCF .theory for the response of a .phaSQpplied att=0. The phase space averaf) changes from its
function with a strong linear component and with no linearequilibrium valug(B(0)), through transient behavior toward a con-
component, respectively. stant steady-state valyd(t—o)).
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Therefore it is convenient to define an additional phase
coordinatep proportional to time and analogous to the phase
response <B(f> extemal feld £,(f angle of trigonometric functions,

p(t)=op+ ot,

e so that F, becomes a periodic function ob, F.(¢)
=FJ(¢+®,), whered .= wT,. The phase space of the sys-
tem can beextendedoy adding this new coordinate, so that
all the explicit time dependence in the equations of motion is
contained in the variable,

J

FIG. 2. Response of a phase functiBrto a time-periodic ex-

ternal field F, applied att=0. At first the response depends . P

strongly on the initial “phase angle” of the external field. After a Qi :E +Ci(DFe(e),

long time, the time dependence of the responses to fields with dif-

ferent initial “phase angles” will be different, but their dependence pi=F,+ Di(I)Fo( @) — ap; (6)

on the “phase angle” will be the same.
through transients to its steady-state va{lB{t—)), as e
shown in Fig. 1. The TTCF theory relates the instantaneoushe state of the system can now be represented by a point in
value of the phase-space averd@4t)) to the time integral  extendedphase spac&’ = (I',¢)=(q;,pi,¢;i=1,...N). It
of the field-dependent correlation function (F) and the is sufficient to consider values of in the range ¢
dissipative fluxJ(I'), e[0®,], so thate(t)=mod(p+ wt,®). In order to know
the responséB(t)) at a certain specified time we need to
(B(1))=(B(0))— BF ftds<B[F(s)]J[F(0)]) 3) know the initial “phase angle”¢ of the external field. At
¢Jo ' very long times(B(t)) is dependent on both the timteand
the initial value ofe. For example, for any timg no matter
In Eq. (3), B=1/kgT, wherekg is the Boltzmann constant, how large, the value dfB(t)) is different for different initial
T is the absolute temperature, and the dissipativeX{y is  phase angles. Therefore we should wWiB{¢q;t)). How-
defined as ever, at large timegprovided the field strength is not too
large the value ofB(t)) is a unique function of the current
Pi value of ¢, namelyp(t), as illustrated in Fig. 2. There is no
‘J(F):Z (Ci'Fi_Di' ﬁ)' (4) ambiguity in writing (B(¢(t))) in the long-time limit. The
final state, which is time periodic in the phase sphc¢és a
Expression(3) has been derived using the assumption oftime4ndependensteady state in the extended phase space

adiabatic incompressibility of phase spa@d ), namely, r. . . . .
Since system(l) in a time-dependent external field

9 9 F(t) is now described by autonomous equations of motion
2 (ﬂ -G+ % 'Di) =0, ) (6) in the extended phase space, we can repeat the steps in
! ! ! the derivation of TTCF response for autonomous syst@ns
nd evaluate thextended phase-space averadt))’ of

which is satisfied by all systems whose adiabatic equation () at timet. We shall go through these steps explicitly

of motion can be derived from a Hamiltonian—see R@&l.
for details. The time dependence on both sides is generat&?low' . .

from the field-dependent equations of motion for systéim Although B(T') is solely a function off’, the'phaseF that
with or without the thermostat. The validity of the E@) the system evolves to at time namely,I'(t), is a function

also relies upon the fact that Eq4) do not depend explic- ©f the initial extendeqoheise,l“’z'(l“,@). Thus it is more
itly on time, and therefore Eq3) does not hold in the non- €vealing to writeB(I'(t))=B(I'(t;I',¢)). In order to know
autonomous case. the value of a phase function at timbe in addition to the

If the external field is periodic in time with the period €'@psed time, we need to specify the initial phase veEtor
T, Fo=Fo(t)=F(t+T,), there is no real steady state. In and the initial phase angle of the external f|elld_. .
the long-time limit the response of a phase function will be FOr Systems governed by FQG,) the equilibrium ex-
time periodic. However, regardless of where, within its pe-tended phase-space distributitg{I"’) is uniform in ¢,
riod, the field is switched on dt=0, in the long-time limit £(T)
the responséB(t—=)) will dependon the external field fo(I")dr' = 0
(not time in the same way, as shown in Fig. 2. This means oTe
that after a long time the response will have the same value
at the same point in the period B%(t) irrespective of the Where
starting “phase angle” of4(t) att=0. Clearly this lack of
sensitivity to the initial phase angle will eventually break fo(T)=
down if the external field is sufficiently strong. We do not
consider such systems here.

dI' de, (7

exd — U ]8(K(I') —Ko)

f dI’ exg — BU(IN]8(K(T) — Ko).
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HereU is the potential energy of the systeKy=dN/23 is =0, B = .
the conserved kinetic energy, adds the Cartesian dimen- L(0)= Q ° 2 o
sionality of the system. a
The average over the extended phase spaée tdken at | <Btpi=soll>
timet, is
9(0)=0y /
b. ~OE \Vai
<B(t)>’=f dr'f'(r',t)B(Ir) | <Bliplt=ool
c. ! L)
:J dr’f(r’,0B(r(t;Ir")) ' T, 2T, =37, 4T, 5T,

FIG. 3. A method to obtain a continuous response to a time-
periodic field at a fixed value of “phase angle. It is necessary to
use the data from the responses starting at all possible igiftal

:f dr fo(I")BI(t;T,¢))

fo(T')
T

wle

- j dr'do B(N(t:T",¢)) ®)

t
<B(t)>’=<B(0)>’—BJ ds(B[I'(s;I'(0),¢(0))]
in the Schrdinger and Heisenberg pictures, respectively. As °
the equilibrium distributionf(I'") is known and given by XFo(¢(0))J(T'(0)))". (13
Eq. (7), it is simpler to use the Heisenberg picture.
The equation of motion foB(I") can be written using the Expression(13) describes the evolution of the extended
chain rule phase-space average of the phase variable after the external
field is applied. The average over tegtendedphase space
means an average over all possible initial combinations of
(9 positions, momenta and the additional phase-space coordi-
PO =TtT.¢) nate ¢. If B were taken to be the dissipative flux, then
. o ) i (J(t))' =0, by symmetry. The fact that the extended average
Differentiation of the Heisenberg expressi@®) for (B(t))  of the dissipative flux vanishes illustrates that the average
using Eq.(9), and the fact tha#B/d¢=0, yields taken in Eq(13) is not really what we are most interested in.
We shall now consider averages taken over the standard
d(B(t))’ J

o f dF’fé(F’)[f’~ o (B(I) phase spac® for a particular value ofp= ¢p at timet.

dB(I'(1))

.9
G =07 [BD)]

. (10

_ As shown in Fig. 2, the long-time behavior of a phase

function(B(t)) can be regarded g8(t)) having a different
Equality (10) relies upon the time independence of system steady state” for eachp(t) e[0.De]. Let us investigate

(6), and does not hold in the non-autonomous case. Integra&t"s idea in more detail. If the field is switched ontat0 in

- - such a way thap(t=0)= ¢p, the responséB(t)) may look
ing Eq.(10) by parts, we obtain like the curve in Fig. 8&). Since ¢(t)=mod(¢ + wt,wT,),
the value ofp= ¢, occurs after each periodl,. We can
. (11 monitor the corresponding value of the respo(Bét; ¢(t)
= ¢p)) whenever the “phase angle” takes on the value of
¢g. It changes from the equilibrium valugB(0)) for ¢(t
since the boundary term vanishes. Using the equations o£0)= ¢, through several different valueéB(T¢;¢(Te)
motion (6), expression(7) for the equilibrium distribution = ¢)), (B(2T,;¢(2Te) = ¢g)), ..., over a few periods, and
function fy(I"") and the definition of the dissipative fly4),  after a long time it reaches its “steady state” and stays con-
and assuming the adiabatic incompressibility of the phasstant. However, the evolution of the responses for epgh
spaceAlrl’, Eq. (5), we get toward its “steady state” is not continuous in time as for the
constant field, but we can only obtain discrete values one
afy(IT'") period T, apart in time.
to J For ¢, to occur at a time different fromt
t=0 ? -0 =0,T¢,2T¢,3T,,..., theexternal field has to start differently
g att=0, for example, like in Fig. @), with ¢(t=0)=¢;. In
fo(I)1AFe() (D] i-o- (12 this case, o(t)=¢q occurs att=t;,t;+Te,t1+2Te,ty
+3T,... . If we included all possible starting points of the
field ¢(t=0)e[0,D.], we would obtain a continuous re-
sponsgB(t; ¢(t) = ¢g)) as a function of time for any “phase
, angle” ¢q, as shown by the dotted line in Fig(c3. How-
d(B(1)) :_ﬁf Al B(T(t:T, @))F () I(T)F4(T”) ever, each value of this continuous function within one pe-
dt @)l ® 0 ' riod is a contribution of a different ensemble of systems,
corresponding to the external field starting with a different
and, integrating with respect to time yields “phase angle” att=0. In other words, we have to use the

d(B(t))"
dt

J .
de’B(F(t))[W (' f4(T))

(9 -/ ! ! — [? . ! ’
S5 LD f(T)] = [T

Substituting Eg.(12) into the equation of motion for Eq.
(11), gives
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phase-space trajectories from the whagtendedphase The expression corresponding to the Heisenberg picture
spacel™ in order to obtain a continuous time evolution of in Eqg. (8) is
the response for a chosen valueggy.
Since the correlation function (B'(t); ¢(1))=@p)
(BII'(t;'(0),¢(0))]Fe(¢(0))I(I'(0))) =(BLI'(t) 8(e(t) —@p)])’

in Eq. (13) is an average of a phase function, we shall need et ]

this concept of a continuous evolution of a phase function for ~ — j dI" fo(I")BI (LT, ¢ = pp— 1)) 8(p(1) — @p).

a particular value ofp= ¢p Iin the derivation of averages

taken over the standard phase spBder a particular value Differentiating with respect to time, we find using the same
of o= ¢pp at timet. procedure as above,

d : d
St (BITW18(0 = 6p) = [ I )"~ (BN 6= 6 01) 3e() — p)]

g .
—— [ 4B, o= o ) a6~ op)re [T F4(17)]

= —Bf dI"B(I'(T, 0= pp— 0)) 3(e(t) — ep)Fe(@) II) fo(I')

== B(BT(1);¢(t) = @p)Fe(pp— wt)I(I'(0), pp— wt)) (14
|
Integrating this equation gives Expression(15) is the general expression for the nonlinear
response to a time-periodic external field. For time-
(B[T'(t; o(t) = @p)]) independent fields, there is rodependence in the distribu-

tion function, and all extended phases that differ only in the
t extended phase-space coordinateecome identical, so that
=(B[I'(0;¢(0)= QDP)]>_IBJ dsF(@p— ws) Eq. (15) reduces to the TTCF formula for autonomous sys-
0 tems[3],
X(BIT(S; ¢(5)=¢p)]I[T'(0;¢(0) = pp— wS)]).
t
U Bwn) (B -5, | asBa(s)IToN).
That this equation is the time integral of E34) is most (16)
easily seen by noting that &0 it is an identity, and that
differentiation of Eq.(15) yields Eq.(14).
The average valu@B(I'(t); ¢(t) = ¢p)) in Eq.(15) means The linear time-dependent response formida appli-
the average over all values of phaBeat timet, for a par-  cable in the low-amplitude or high-frequency limit, is ob-
ticular chosen constant Valuﬂ: of the phase ang|e at time tained from Eq(lS) if the equilibrium correlation function is
t, o(t); o(t)=cp. If all possible values ofpp from the  Substituted for the transient correlation in the integrand of
interval [0,wT,] are substituted into Eqi15), the depen- Ed. (15), keeping in mind that in equilibrium there is ro
dence of(B(I'(t); o(t)=¢p)) On ¢p at the timet can be dependence iB(t) or J(t). After substitutings’=t—s, we
found. It should be pointed out that this dependence canndotain
be obtained by direct calculations from a set of trajectories
starting from thesingleinitial value of ¢(0), as shown in Fig.

3. Such a set could only give the value @(I'(t); ¢(t) (B(F(t)))z(B(F(O)))—,Bftds’Fe(s’)
=g¢o+wt)) at the timet, (B(I'(t+dt);¢(t)=pg+ o(t 0
+ 6t))) at the timet + 6t, etc. It should also be observed that X (B(I'(t—s'))I(T(0))). (17)

in the integrals on both sides of E(L5), ¢ is a constant

equal topp . However, as the time changes, phase-space

trajectories which contribute to the correlation function at The general formuld17) has been derived for systems
some particular value of change. For different timesthey  thermostated using the Gaussian thermo&at However,
start at different initial values ofy= ¢p— ws. Therefore, in  analogous formulas can be derived for adiabatic and canoni-
order to find the evolution of B(I'(t); ¢(t)=¢p)) for the  cal systems, systems thermostated with different thermostats
chosen value op(t) = ¢p, we need to know the behavior of or with other types of constraints, for example microcanoni-
trajectories withall possible initialg(0) at all previous times.  cal, isobaric, or isoenthalpic.
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Ill. TEST SYSTEM: COLOR CONDUCTIVITY P
The formalism described in the Sec. Il is illustrated by the 9=
example of nonequilibrium molecular dynamics simulation ,
of a system of two disks with periodic boundary conditions, pi=Fi+iciFesing—ap;, (22
subject to the time-dependent color fi¢R]. The equations i
of motion are P,

P with the thermostating termx given by Eq.(20), and g;
R =(¥;,Y;), etc.
(18) In this system, the equilibrium distribution func-
S i o tion fo(I'") Eq. (7), is independent of ¢, and
Pi=FiticiFe()—ap, =1 and 2. (@1aT)-[T"£3(T")] in Eq. (12) is given by

The interactionF; between disks is characterized by the

WCA (Weeks-Chandler-Andersppair potential 9], T AT EH(0")]=— BF (9o fo(T VI, (23
o\12 [\
4g —) —(— +e for r<2V6gs where
U(r)= r r
0 for r>2Y%q, 1 _
Jx:v_E CiXi (24)
i=1,2

whereo is the effective diameter of the disksthe depth of
the potential well of the corresponding Lennard-Jones pote

tial, andr =[q; —qp| is the distance betweein disks 1 and 2. o particle system thermostated using EGs), (19), and
The disks differ by color labels;;=(—1)', i=1 and 2, (20 "the magnitude of the color current cannot increase be-

which determine the interaction of each disk with the exter—yond a saturation value which can be determined from its

nal color fieldF(t) acting in thex direction. We assume @ constant kinetic energyl9). An external field of even in-
sinusoidal time dependence, creasing magnitude would cause an increase in the magni-
tudes of thex components of particle velocities. In the limit

of Fe—, K=(pZ,+ p3,)/2m can increase only to the maxi-
mum value determined from conditid9),

s the color current density. It should be observed that for the

F(H)=0(t)Fsin(go+ wt),

where the Heaviside functio® (t) denotes the fact that the
field starts to act upon the systemtatO.

The system is thermostated using the Gaussian thermo-
stat. It should be mentioned here that infsbody system o
the temperature is defined from the peculiar particle veloci-
ties relative to the streaming velocity of each species. How-max|p,/}=(mkgT/2)¥2 and max|x,|}=(kgT/2m)*2,
ever, in the special case of just two particles, there are not o ) .
enough degrees of freedom to define both the streaming ve- Sinced,=(X;—X;)/V=—2x,/V=—nXx;, wheren is the
locity and the peculiar velocities. Therefore we defitem-  number densityn=2/V, the saturation color current is
peraturelikevariable T using the laboratory kinetic energy,

ma){( pix'*‘ pgx)lzm} = ma){ pix/ m} =kgT/2,

max{|J,|} =n(kgT/2m)/2, (25)

kgT/2= 2 p2/2m=K, (19 We also define a microscopic pressurelike variable of this
=12 two-particle two-dimensional system,

where kg is the Boltzmann constant. The temperaturelike 1 N p>2<i+P2i
variableT, as well as the total kinetic energy, are constrainedP = > (PyxtPyy)= v < 2 ( y +xini+yiFyi) > .
to constant values using the Gaussian multiptier =1 m 26
2 (Fi+iciFe)-p; In this expression, the term corresponding to the kinetic
- i=12 (20) part of the pressure consists of the contribution of the total
5 : rather than peculiar momenta, since the peculiar velocity has
i pi no meaning in the two-particle system. Because of the ther-

mostating (18), (19), and (20), the total kinetic energy is

For this system, the phase space is defined I'as fixed, and the “kinetic part” ofP is a constant equal to
=(q;,p), i=1 and 5 The additional coordinate can be kgT. The other two terms in the sum are exactly equal to the

defined as configurational part of the pressure.
We monitored the response df =(V/N)J,, which is
o(t)= o+ wt, (21) proportional to the color current densit{24), and the

pressure-like variabl®, Eq.(26), to sinusoidal color field as
so that the equations of motion for-0 in extendedphase a function of the angle and timet. Since the color current
spacel =(q;,pi,¢), i=1 and 2, are is a linear function of momenta, the current response has a
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FIG. 4. Color currenl, = (1/N)3c;x; as a function of the angle at different times after the color field has been applied. The results of
the direct simulation, time-dependent TTCF, and linear approximation are compared for two amplitudes of the color field. For the lower
amplitudeF,=0.2 all three methods give similar results, and for the higher ampliyde4 the amplitude of the linear approximation
response is higher than the other two, which cannot be distinguished in the graphs. The dashed line represents the rescaled external field, tc
show the development of the phase lag. The maximum allowed valug fisr(kgT/2m)*2, and for this particular computer experiment it
is (0.5)42=0.707 107.

strong linear component for weaker fields and the results ofJ (I'(t); o(t) = ¢p))

the time-dependent TTCF simulation could be compared to

the results of the linear-response theory. The equilibrium ‘

correlation functior{ P(t)J,(0)) under the time integral in = _IBVJ ds Fo(op— 0s)(J(T(S); o(S)=¢p)

Eqg. (17) vanishes at all times, and there is no linear response 0

for the pressure. The observed response in the pressure is . _

therefore a strictly nonlinear effect, and provides a powerful X I(I(0);0(0)= gp= wSs)). @7

test of our theory.
y The simulations were done at the reduced density

, p*=pc?=0.396850 and at the reduced temperature
V. RESULTS: COLOR CURRENT T*=kgT/e=1.0, using the fourth-order Runge-Kutta
The response of the color current density to sinusoidamethod of integration of the equations of moti@®) with a
color field has been monitored as a function of the angle time step ofst=0.002. The interval0,2s] of possible val-
and timet, and, since in equilibriundJ,(I'(0);¢))=0(V¢), ues of the anglep has been divided into 100 subintervals,
Eqg. (15) reduces to and the time step of time integration in EQ7) is therefore
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In Fig. 6, the trajectories starting at the same initial angle

F =4
04 1 ° ; ¢o=0 are followed over five periods of the color field.
: ¢=n 1 Again, the linear approximation results agree reasonably
02 ¢ Lp:TE/Z\/ — well with the direct simulation and TTCF results in the case
< o N ] of the lower amplitude of the color field,=0.2, but for the
= M3 N ‘ . higher-field amplitudeFy;=4 the oscillations predicted by
O=37 . . . . . .
on | p=0 : the linear approximation are larger than the direct simulation
k&-"/\c—“’“‘ _"j_ and TTCEF results. It is obvious that the linear approximation
04 [ direct ] should fail at larger fields, since it predicts that the amplitude
i s vl S BN of J, increases linearly with the amplitude of the field, and
0 ! 2t 3 4 5 thus can exceed the maximum allowed amplitude

max{|J;|}=(kgT/2m)¥2=0.707, which is an impossible re-
sult. However, even at a field of the amplitug=4 the
FIG. 5. The time evolution of the color curredyt at four angles  jhquced current is only 35% of its saturated value, and we
¢ for the color field amplitudé=o=4. should not be too surprised that the linear theory is a reason-
able approximation. The response obtained by the TTCF

ds=0.01. From each starting phabe- (q; ,p;) of the isoki- ~Method coincides with the direct simulation figp=4.

netic equilibrium ensemble, an additional starting point was_ 1 h€ main advantage of the time-dependent TTCF method
generated using the time-reversal mappibg(T)=(q;, lles in its efficiency in noise reduction, especially for fields
—p.), in order to improve the statistics and to reduce thef low amplitude. In Fig. 7 the results of the direct simula-
systematic error. This additional starting phase point ensurdi®n and TTCF at=5 obtained from the simulations from
that the average initial current is identically zero. 2X5000 and 60000 for eachy are compared foig

The color current response has been monitored for a range 0-2 and from 25000 and 218 000 forFo=4. For the
of color field amplitudes at the frequency ef27 equal to  lower-field amplitude there is considerable noise reduction in
unity. Figure 4 shows the evolution of the color current re-the direct simulation results with the increased number of
sponse for two amplitudes of the color fiell,=0.2 and 4, trajectories, but the result is still quite noisy. The TTCF re-
as a function of the angle(t) at different times, from direct Sults, on the other hand, are smooth and hardly change at all,
simulation and using the transient time correlation functionVhich means that the correct statistics can be obtained with

approach. Since the objective of this simulation has been t§SS trajectories by using the TTCF method. Figure 7 also
test whether the direct calculations and our the¢2y) shows that the direct simulation is much more efficient for

coincide, we used a large number of initial trajectories,igh-field amplitudes ko=4) than for low amplitudes, al-
2% 60 000 for each of the 100 values of0) for the weaker though the TTCF results are still smoother than the direct
field, and 2x< 18 000 for the stronger field where the results€Sults: »

of direct simulations were less noisy. In order to compare the efficiency of the two methods

In Fig. 4, shortly after the color field started to act uponfOr calculating the color current response at a range of
the system, at=0.1, the response is of very low amplitude field amplltudgs, we performed two sets of simulations using
and almost in phase with the field. In time, the phase lag and < 10 000 trajectories for each value ¢f and used the dis-
the amplitude change until they reach the value of the finaf"&Pancy in the results to estimate the error of simulation
state. The corresponding linear response was evaluated usiﬁg]Q/Fo- The mean error was calculated as the mean value of
the time-dependent response form(d&) and compared to half the discrepancy of the responses for the external fields
the direct simulation and TTCF results. The equilibrium cor-starting atpo=0 over the time intervaht=5, and the maxi-
relation function in Eq.(17) has been calculated from mum error is the maximum of half the discrepancy over the
3% 10" trajectories using the shift register techniqaé]. In ~ same period. Figure 8 shows that for the fields of the ampli-
our calculations the shift register was not filled at every timetude of less than aboit,= 2.5 the mean error of the direct
step, but there was a waiting period of 500 time steps pemethod is larger than the mean error of the TTCF method,
tween the starting points of old and new trajectories. and TTCF is clearly more efficient. Fé#;=2.5 the mean

In the case of the lower amplitude in Fig. 4 the direct anderrors and hence the efficiencies of both methods become
TTCF methods agree within the experimental error, althougt§omparable. The maximum errors Fig. 8 are, however, con-
there is still some noise in the direct results at2, and the ~ sistently lower for the TTCF method, because the latter
amplitude of the linear response is only slightly larger. How-Yields averages which are smoother.
ever, for the higher amplitude of the color field in Fig. 4, the The Green-Kubo linear-response theory can be used to
amplitude of the linear approximation is about 8% higher inestimate the expected error in direct calculations of color
the final state than the one obtained by direct simulationcurrent. In the low-field limit the standard deviation in the
whereas the direct simulation and TTCF results agree t6urrent density)’ is independent of the external fiefd1],
within 1% and cannot be distinguished in the graph. and thereforeAJ,/Fx should be inversely proportional to

The time evolution of the color current response for fivethe field amplitude. Thgochlx fits to the mean and maxi-
periods of color fieldF. of the amplitudeF,=4 for four = mum errors of direct calculations, shown in Fig. 8 as dashed
different anglese, obtained from the same simulation as lines, show that this proportionality is roughly satisfied. The
above, is shown in Fig. 5. The correspondence of the direatrrors in the TTCF calculations seem to be field independent,
simulation and the TTCF results is remarkable at all times. but are always smaller than those for the direct calculations.
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FIG. 6. The time evolution of the color curredif from the trajectories which all start from the same initial angge=0. For a lower-field

amplitudeF,=0.2, the color currents, evaluated by direct calculation, using the time-dependent TTCF method and the linear approximation,

are comparable. For the higher-field amplituelg=4 the linear response theory gives oscillations that are too large, and the results of the
direct and TTCF methods coincide on the diagram. The thin line is the rescaled external field.

V. RESULTS: HYDROSTATIC PRESSURE

The TTCF expression for the “hydrostatic pressure” de-
rived from Eq.(15) is

t
(PI'(t);0(t)= @p))Z(P(0)>—ﬁVLdS Fe(op—ws)
X(P(I(s);¢(S)= ¢p)

XJIx(I'(0);¢(0) = ¢p— ws)).
(28)

function of momenta and therefore depends only on the mag-
nitude and not on the sign of the external fjel8ince the
effect is very small, the direct simulation data are very noisy,
and therefore there is still some disagreement at early times.
At late times, the agreement between the two sets of calcu-
lations is excellent. This agreement is all the more remark-
able because of the complex shape of the response curves
and the fact that these responses are entirely nonlinear. The
chance of accidental agreement, particularly in Fig. 10, must
be negligible.

In Fig. 10 we see the response fe(t)=0,7, and for
o(t)=/2,37/2. By symmetry the response in each of these

In Figures 9, 10, and 11 we show the results obtained byairs should be identical. The disparity in this gives a rea-
the direct simulation and the time-dependent TTCF methodonable estimate of the statistical uncertainty in the TTCF

for 1.1x 10° trajectories for each of the 100 values @for
the field amplitude ofFy=3. The pressure oscillates with

and the direct response curves.
Figure 11 shows the pressure responses obtained from

twice the frequency of the external fie{dince it is an even direct simulations and TTCF results for fields of the ampli-

0.02 IF.°_.0,'2 | . , ":"‘_“I — — 03
0.015 E 3 8 "’\ 1 o2
0.01 3 : E FIG. 7. lllustration of the effi-
0.005 ¢ E 3 101 ciency of the time dependent
8 0 3 s Jo = TTCF method in noise elimina-
-0.005 F EP tion. For the lower field amplitude
-0.01 direct 5x10° direct 5x10° \ Fo=0.2, the noise is somewhat
0.015 : direct 60x10° direct 18x10° 3 -02 reduced in the results from
002 i 3 — ,,,:_0,3 2X60 000 trajectories for each
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 compared to the results from
o2 o2r ) ;
2X5000 trajectories. TTCF re-
0.015 ‘ F.°=.of2 _ . Fo=4 _ 03 sults, however, do not differ
/\ 1 1 much, suggesting that good statis-
0.01 . F /\ o2 tics can be obtained from less tra-
0.005 | 3 E ] 01 jectories. For the higher amplitude
F ] Fo=4, the direct method is much
: = o J0 =7 more efficient than for the lower
ER field, but the TTCF results are still
ttef 5x10° ttef 5x10° ] smoother.
i ttef 60x10° ticf 18x10° \; 02
. I R . 1 1 P LT 0.3
0 0.2 0.4 - 0.6 0.8 1 0 0.2 0.4 ¢/2n°‘6 0.8 1
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FIG. 8. (a) Simulation errors of the color current response for
a range of field amplitudes from two sets of simulations of L of
2X 10 000 trajectories for each field. The mean error is the average 0001 E 3
error from two responses to the field starting wiif0)=0 over a i p— 1
. . . . . E Irec +
time interval of At=5, the maximum error is the largest error in -0.002 - ttcf 3
this interval. The assumption of A§ dependence of the direct 0.008 Fit

simulation errors on the field amplitude gives a reasonably good fit. F
(b) Mean errors become comparable Fy=2.5, but the maximum 0.002 ¢
error is always larger for the direct simulations, which is better seen

. . . 0.001 E
in the logarithmic plot. F
IR
< ;
tudeFy= 3 starting atpy=0 andg,= 7/2. The dotted lines -0.001 £
represent the rescaled external field. The responsepfor 0002 P direct
= should be equal to the response {gy=0 because the 2 tof ;
. . . . - I I S S T S
field differs only in sign, and the response fggp= /2 0003 02 04, 05 o0 .

should equal the response fep=37/2. The disparity be-
tween the responses ay=0 and¢o= 7 was used to esti-
mate the simulation errak (AP)/Fy depending on the field
s . i i o et s e 0 co 1

) . ) . ’ i Ras been applied. The pressure oscillates with twice the frequency
age discrepancies over the time intervalddf=5 againstthe ¢ ha field.
field amplitude in Fig. 12. Although the direct and time-
dependent TTCF curves are computed from the same num-
ber of simulation time steps, the TTCF curves always have a 0.002
smaller variance. This is somewhat surprising given that the
field amplitude is so large, since the TTCF methods will
always be more efficient than direct methods at sufficiently
small fields. We believe that this improvement in efficiency
is related to the fact that, in E¢L5), the response at a given
time and specified phase angle is computed from an en-
semble average of trajectory responses which span the initial
phase angle distribution. This cross-phase-averaging results
in superior efficiency.

FIG. 9. The direct simulation and TTCF results for the pressure

FIG. 10. The time dependence of the pressure at four angles
VI. CONCLUSION for the color field amplitudd-,=3. The responses &i(0)=0 and
¢(0)= should be equal by symmetry, as well as the responses at
The generalization of the TTCF formalism to nonautono-¢(0)= /2 and ¢(0)=3#/2, which can give an estimate of the
mous systems was developed by extending the phase spaaeor of simulation.
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-0.001 0
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0.002 5 F,
0.003 £ g « 3
0.004 — 3
0 1 2 4 3 4 5 FIG. 12. Dependence of the simulation error on the field ampli-
tude. The error of simulation calculated fronx20 000 trajectories
£ per ¢ for each field amplitude is found from the average discrep-
0.003 ancy between the responses f0)=0 and ¢(0)= over the
0.002 [ time interval of At=5. Again, the 1F, dependence of the direct
0.001 E simulation errors on the field amplitude gives a good fit.
% o
< ;
-0.001 [ .
0002 & looks only at one hyperplange= ¢p all the time, and uses
0'003 : only the phases on this hyperplane, as they arrive from dif-
_0.06'4 : ferent initial coordinatesp(0), to evaluate the average as

f(I'",t) changes in time. It is therefore not surprising that
trajectories starting at all possible extended phase-space co-
ordinates ¢ play a role in calculations of B[T'(t; ¢(t)
=¢p)]), i.e., the average d over a particular hyperplane
¢o=¢@p of I'" at the timet when the average is evaluated
using the time-dependent TTCF algorithm.

The simulation results for the test case of the response of
the color current to a sinusoidal color field for a periodic
to include an additional coordinate, which is linearly de-  two-disk system, shows excellent agreement between the ex-
pendent on time and which is incorporated into the equationtended TTCF approach and the direct simulation. The com-
of motion. Thelinear time dependence of this additional parison of results for the intrinsically nonlinear field induced
phase-space coordinate is essential for the development pfessure shift is even more impressive. Even at compara-
the extended TTCF algorithm, because it enables one ttively large fields, the extended TTCF approach yields re-
reach exactly the prescribed valuesycdfter a given number  sults with superior computational efficiency to direct simula-
of time steps. The equations of motion in #dendeghase tion. This enhanced efficiency is thought to result from the
space become autonomous, and the response is governedryndeterministic sampling of the phase angle. This sampling
the time evolution of the probability distributioff (I'") of  results in an efficient exploration of the extended phase
the extended phase space as a whole. Therefore, in order $pace.
calculate the response, it is necessary to use initial equilib- One disadvantage of this theory is that it can only be
rium phased” (0) distributed over all possible values ¢f  applied to periodic fields. Another disadvantage is that the
as well as over all possible valudg,p). In the direct results are relevant only to periodic fields of the same fre-
method, one observes a set of initial phases on a hyperplamgiency and wave form. For example, we cannot use the re-
¢(0)=¢pp— wt, as it evolves in time while the phase-spacesults of the present simulations for sinusoidal fields to predict
distribution relaxes from equilibriunfig(I'') to the steady- the response of the same system to strong square-wave fields,
statef(I'') form. The extended TTCF method, however, or indeed, to sinusoidal fields of different frequencies.

FIG. 11. The responses to the external fields starting@t=0
and ¢(0)= /2 for Fy=3. The response at(0)= 7 should equal
the response ap(0)=0, and for¢(0)=3#/2 should equaky(0)
=m/2 because the corresponding fields differ only in sign.
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